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Probabilistic emission inventories were developed for
urban air toxic emissions of benzene, formaldehyde, chromium,
and arsenic for the example of Houston. Variability and
uncertainty in emission factors were quantified for 71-
97% of total emissions, depending upon the pollutant and
data availability. Parametric distributions for interunit
variability were fit using maximum likelihood estimation
(MLE), and uncertainty in mean emission factors was
estimated using parametric bootstrap simulation. For data
sets containing one or more nondetected values, empirical
bootstrap simulation was used to randomly sample detection
limits for nondetected values and observations for
sample values, and parametric distributions for variability
were fit using MLE estimators for censored data. The
goodness-of-fit for censored data was evaluated by
comparison of cumulative distributions of bootstrap
confidence intervals and empirical data. The emission
inventory 95% uncertainty ranges are as small as -25%
to +42% for chromium to as large as -75% to +224% for
arsenic with correlated surrogates. Uncertainty was
dominated by only a few source categories. Recommendations
are made for future improvements to the analysis.

Introduction
The characterization and quantification of uncertainty and
variability in air toxic inventories are important to prevent
erroneous inferences in air quality modeling and exposure
assessment, which may lead to major environmental policy
implications. This paper presents a methodology to ac-
complish such quantification. This work has significant
applications in air quality modeling and can provide much
better understanding and quantification of exposure and risk
assessment of hazardous air pollutants. The main contribu-
tions of this paper are to show how statistical techniques of
maximum likelihood estimation (MLE) and bootstrap simu-
lation can be combined to enable quantification of interunit
variability and mean uncertainty in emission factors and to
apply probabilistic methods to quantify, for the first time,
the range of uncertainty in urban-scale hazardous air
pollutant emission inventories via a case study.

The focus of the case study is on selected air toxic
pollutants for the Houston, TX, urban area. The U.S.
Environmental Protection Agency has developed a priority

list of 33 urban air toxics for additional assessment of the
health effects of air toxics in urban areas (1). Pollutants for
which sufficient data were available to support a probabilistic
analysis of air toxic emissions include chromium, formal-
dehyde, benzene, and arsenic, which have risk-related
rankings of 5, 6, 10, and 17, respectively, on a nationwide
basis, among the listed 33 urban air toxics. Houston was
selected as the basis for a case study because it has been the
subject of extensive study by others using deterministic
methods (2).

Urban air toxic emissions are subject to both variability
and uncertainty. Variability refers to the heterogeneity across
different elements of a population over time or space (3, 4).
Variability in emissions arises because of differences in
feedstocks, ambient conditions, design, or operational
practices among facilities (5-10). Uncertainty is lack of
knowledge about the true value of a quantity (4, 11).
Uncertainty in emissions is attributable to random sampling
error, measurement error, and nonrepresentativeness (5-
10). Variability and uncertainty can be quantified simulta-
neously using a two-dimensional probabilistic framework
(3, 4, 6-10, 12).

Emission inventories (EIs) are commonly obtained by the
product of emission factors and activity factors. EIs are used
by federal, state, and local governments and by private
corporations for (a) characterization of temporal emission
trends, (b) emission budgeting for regulatory and compliance
purpose, and (c) prediction of ambient pollutant concentra-
tions using air quality models. If random errors in the EIs are
not quantified, erroneous inferences could be made regarding
trends in emissions, source apportionment, compliance, and
the relationship between emissions and ambient air quality
(13).

The National Research Council (NRC) recommends that
quantifiable uncertainties be addressed in estimating mobile
source emission factors (14), and logically, this recom-
mendation should be extended to other source categories.
The NRC has also addressed the need for quantification of
uncertainties in emission inventories used in risk assessment
(15). Probabilistic techniques have been applied to estimate
uncertainty in emission factors for mobile sources, major
stationary sources, and area sources, particularly for criteria
pollutants (e.g., NOx) and ozone precursors (e.g., volatile
organic compounds) (5-10, 13, 16-18). Recent work regard-
ing air toxic emission estimates has focused on situations in
which there was only one detection limit (10, 13). However,
many air toxic data sets have multiple measurements below
several different detection limits, since the detection limit is
a function of the sample volumes and analytical methods
applied separately to each measurement.

Quantifiable uncertainties based upon statistical analysis
of empirical data include random sampling error and random
measurement error. Random measurement error is ac-
counted for because the observed variability in the data
includes both the true variability and the random component
of measurement error, which in turn influences the range of
the sampling distribution of the mean (19).

The objectives of this paper are to (i) demonstrate the
application of a methodology for quantification of variability
and uncertainty in situations involving multiple detection
limits, (ii) quantify variability and uncertainty in urban air
toxic emission factors for a specific case study, (iii) develop
probabilistic EIs for selected pollutants, and (iv) identify key
sources of uncertainty in the probabilistic EIs.
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Methodology
Air toxic emission factor data often include one or more
measurements below a detection limit. Such data are referred
to as censored (20). Conventional methods of dealing with
nondetected measurements typically involve replacing non-
detected values with 0, half of the detection limit, or the
detection limit. Such methods lead to biases in estimates of
the mean and variance for interunit variability in emissions
(21, 22). In contrast, the use of MLE to fit parametric
probability distributions to nondetected data is asymptoti-
cally unbiased (21-23). The likelihood functions used for
candidate parametric distributions are given in the Sup-
porting Information (23, 24). For censored data, the likelihood
function is based upon the cumulative probability of the
detection limit, rather than the probability density of an
observed value, conditional on parameter estimates. A fitted
parametric distribution is an inference regarding the true
but unknown population distribution of interunit variability
in the emission factor. The uncertainty in the mean or other
statistics of the fitted distribution is estimated using bootstrap
simulation. Bootstrap simulation is a numerical method for
estimation of confidence intervals based upon simulation of
random sampling error using Monte Carlo simulation (25).
There are also other methods in uncertainty analysis, such
as likelihood-based methods (26, 27). Bootstrap simulation
is especially efficient for situations in which sample sizes are
small and data are skewed, and does not require any
restrictive assumptions regarding sampling distributions such
as normality (19). Therefore, bootstrap simulation is a suitable
technique to apply to urban air toxic emission factors.
Furthermore, bootstrap simulation enables uncertainty
analysis for any statistic of interest (e.g., the mean) as well
as for the cumulative distribution function of the estimated
population distribution of the data set.

To apply bootstrap simulation to censored data, it is
necessary to characterize whether each observation is a
detected measurement or is below a detection limit. Thus,
a binary indicator symbol is used for each observation. For
detected values, the binary indicator is set to 0. For
nondetected values, the binary indicator is set to 1 and the
corresponding numerical value in the data is the detection
limit. Therefore, it is possible to quantify the existence of
multiple nondetected values in the data, each of which may
have a different detection limit. In bootstrap simulation, the
data and indicator symbol pairs are sampled together
randomly with replacement n times to generate one bootstrap
sample, where n is the sample size of the original data set.
The process is repeated B times. To each of the B empirical
bootstrap pair samples, the selected type of parametric
distribution is fit using MLE. The resulting B realizations of
any statistic of interest, such as the mean, variance, or
distribution percentiles, characterize the sampling distribu-
tion of the statistic associated with random sampling error.
These distributions are interpreted as representing the
uncertainty in the statistic associated with the variability in
the data, finite sample size, and data censoring (23).

Log-Normal, γ, and Weibull Distributions. For environ-
mental data sets, such as concentrations or emission factors,
log-normal, γ, and Weibull distributions are often chosen to
represent variability (3, 6-8, 28). The log-normal distribution
is nonnegative, positively skewed, and based upon the central
limit theorem applied to multiplicative processes; therefore,
this distribution often well-describes data for physical
quantities that arise from multiplicative processes, such as
mixing or dilution (29, 30). The γ distribution is nonnegative,
positively skewed, and similar to the log-normal distribution
in many cases but is less “tail heavy” (3). The Weibull
distribution is a flexible nonnegative distribution that can
assume negatively skewed, symmetric, or positively skewed
shapes and has been used to describe air pollutant con-

centrations (3, 28). These three distribution types are used
as candidates for describing interunit variability in censored
air toxic emission factor data.

Goodness-of-Fit Test. The goodness-of-fit of a parametric
distribution fit to data was evaluated by comparing the
bootstrap confidence intervals of the fitted cumulative
distribution function (CDF) with an empirical distribution
of the original sample data. Generally, the fit is taken as a
reasonable one if 95% of the data will fall inside a 95%
confidence interval of the CDF of a fitted distribution (19).
The larger the proportion of data contained within the
confidence intervals, the greater the preference for the
particular candidate distribution model. The details of the
procedure are illustrated in case studies. There are also
alternative methods for the goodness-of-fit test, such as the
Kaplan-Meier estimator. In previous work, the confidence
interval calculated by the Kaplan-Meier estimator has been
compared with bootstrap confidence intervals. Both produce
similar results. We choose the latter because it is more
informative with regard to many statistics and probability
ranges for the intervals (23).

Monte Carlo Simulation of Uncertainty in the Emission
Inventory Model. The emission inventory for a pollutant is
given by

where EFi ) emission factor for source i (mass emissions per
unit of activity) and AFi ) activity factor for source i (unit of
activity). On the basis of selection of the preferred probability
distribution model to represent interunit variability in the
emission factor, uncertainty was estimated for the mean
emission factor using bootstrap simulation. Uncertainty in
the activity factor was estimated on the basis of judgment.
The uncertainty in the emission inventory was simulated
using Monte Carlo simulation (3, 11). A total of 500 random
numbers were first generated from the distributions of the
mean emission factors and activity factors. They were input
into eq 1. Thus, 500 random values of the outputs were
obtained, resulting in an estimate of the probability distribu-
tion of uncertainty in the total inventory.

Identification of Key Sources of Uncertainty. The
sensitivity of uncertainty in the total emission inventory for
a pollutant to uncertainty in the individual inputs to the
inventory was assessed using Spearman correlation coef-
ficients, which measure the strength of the monotonic
relationship between two random variables (3). Inputs that
had a statistically significant correlation with the outputs
were identified as sensitive inputs. The larger the magnitude
of the correlation, the greater the sensitivity. Identification
of the most highly sensitive inputs enables targeting of
resources in future work to collect more or better information
to reduce uncertainty.

Houston Emission Inventory
A probabilistic emission inventory for benzene, formalde-
hyde, chromium, and arsenic was developed for Houston on
the basis of the deterministic 1996 inventory. The 1996
inventory was selected because it has been used for a variety
of analyses and was the most recent readily available. The
focus of the uncertainty analysis was on major source
categories. For example, for benzene, the sources emitting
more than 20 t/yr were defined as major source categories.
There are 24 major source categories, and these account for
90% of the total estimated emissions. For formaldehyde, there
are 12 major source categories accounting for 99% of the
total estimated emissions. For chromium and arsenic, there
are 27 and 20 major source categories accounting for 71%
and 81% of the total emissions, respectively. The point
estimates of the emissions for each major source category

EI ) ∑(EFi)(AFi) (1)
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are in Tables S-1-S-4 for benzene, formaldehyde, chromium,
and arsenic in the Supporting Information, respectively.

Data for the interunit variability in emission factors were
identified for each pollutant and source category, where
available, on the basis of information reported by the EPA
and others, such as the California Air Resources Board and
the Coordinating Research Council (5, 7, 8, 31-41). A detailed
summary of the sources of data for each source category are
given in the Supporting Information in Tables S-5-S-8 for
benzene, formaldehyde, chromium, and arsenic, respectively.
For many source categories, directly relevant data were
available via which to estimate interunit variability and to
infer uncertainty in the mean emission factor. For other
source categories, directly relevant data were not available.
Therefore, judgments were made regarding surrogates for
which uncertainty estimates were likely to be similar. For
example, directly relevant sample data were available for
intervehicle variability in benzene emissions from light-duty
gasoline vehicles. However, such data were not available for
heavy-duty gasoline vehicles. In this case, the relative range
of uncertainty in mean benzene emissions for light-duty
gasoline vehicles was used as a surrogate to estimate the
relative range of uncertainty in mean benzene emissions for
heavy-duty vehicles. A detailed discussion of the judgments
made regarding surrogates is given in the Supporting
Information.

The emissions for some source categories are estimated
as the aggregation of several subcategories. As an example,
uncertainty in benzene emissions for petroleum refineries
was estimated on the basis of weights assigned to uncertain-
ties in emissions for gasoline loading racks at bulk terminals
and bulk plants, storage losses at a typical gasoline bulk
terminal, wastewater treatment, emissions from a typical
bulk plant, storage losses at a typical pipeline breakout station,
emissions for a typical service station for petroleum refineries,
and storage tanks for petroleum refineries. For each of the
subcategories, data were available from which to quantify
relative uncertainty in mean emission rates.

For mobile sources, uncertainty in emissions was esti-
mated on the basis of the product of uncertainty in the
emission rate of total hydrocarbons and of the uncertainty
in the percentage of total hydrocarbons emitted as a specific
air toxic. Details are shown in the Supporting Information.

Directly relevant uncertainty data were available for as
little as 45% of the major source emissions for formaldehyde
to as much as 74% in the case of arsenic. When both direct
and surrogate uncertainty data are considered, uncertainty
is estimated for as little as 71% of the nominal emission
inventory in the case of chromium to 90% or more of the

inventories in the cases of benzene and formaldehyde. Thus,
for all four pollutants, it was possible to quantify uncertainty
for the majority of the emission inventories.

Results
The variability and uncertainty in the urban air toxic emission
factors for different source categories of the Houston area
were quantified. Probabilistic emission inventories were
developed considering the uncertainty in the emission and
activity factors. The key sources of uncertainty were identified
by sensitivity analysis.

Quantification of Variability and Uncertainty in Emis-
sion Factors. Log-normal, γ, and Weibull distributions were
fit to the available emission factor data for interunit variability.
In terms of the goodness-of-fit test, the adequacy and
preference of the fit were evaluated graphically on the basis
of comparison of bootstrap confidence intervals of the fitted
CDF to the empirical distribution of the data for both
uncensored and censored data. For each case, one or more
distribution types are judged to be adequate. The preferred
distributions for interunit variability are given in Tables S-1-
S-4 for benzene, formaldehyde, chromium, and arsenic,
respectively, including the parameter estimates. The interunit
variability in the urban air toxic emission factors is typically
large. For example, 13 out of 16 empirical benzene emission
factor data sets have a 95% probability ratio larger than 2
orders of magnitude based upon the preferred distribution
type as given in the Supporting Information. The 95%
probability ratio is defined as the ratio of the upper level to
the lower level of the 95% probability range for interunit
variability.

Uncertainty in the mean was estimated using parametric
bootstrap simulation for the cases with no censoring and
with the empirical bootstrap pair approach previously
described for cases with censoring. The resulting estimates
of the 95% confidence intervals for the means are summarized
in Tables S-1-S-4.

To illustrate the details of the approach via which
variability and uncertainty in an emission factor were
quantified, an example case study is given for the benzene
emission factors for case 3b, nonwinter storage losses at a
typical gasoline bulk terminal. The emission factor data
contain 11 detected values. Bootstrap simulation was used
to estimate the confidence intervals of the fitted CDF. Figures
1 and S-2 show an empirical distribution of the data, the
CDF for the distribution fitted to the original data, and the
bootstrap confidence bands for the cases based on log-normal
and Weibull distributions, respectively, which are visually

FIGURE 1. Variability and uncertainty in the benzene emission factor for case 3b (nonwinter storage losses at a typical gasoline bulk
terminal) estimated on the basis of a log-normal distribution.
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judged to be better ones to represent the data. The data
points are plotted using the Hazen plotting position (3). For
log-normal and Weibull distributions, the 95% confidence
intervals of the CDF enclose all of the data points. Therefore,
both the log-normal and Weibull distributions are adequate
fits to these data. However, the Weibull distribution has a
heavy lower tail that appears to give inappropriate weight to
small values not consistent with the data set. Thus, the log-
normal distribution was selected as a preferred fit. Therefore,
the recommended 95% confidence interval relative to the
mean value is -72% to +185% based on log-normal
distribution for this case.

The selection of a preferred distribution for a censored
case with multiple detection limits is illustrated by the arsenic
emission factors for case 14, external combustion boilers-
industrial wood. The emission factor data contain five
detected and two censored values. Log-normal and Weibull
distributions are taken as candidate parametric distributions
as they graphically describe the data better. Figures 2 and
S-7 show the variability and uncertainty based upon Weibull
and log-normal distributions, respectively. Because each
censored value has a different detection limit, two detection
limits are indicated. For the detected points, four of them
are larger and one is smaller than the larger detection limit.
The former four points have exact ranks and exact empirical
cumulative probabilities. For the smallest detected data point,
there is ambiguity in the ranks and cumulative probability.
These data points could have a rank as low as 2 or as large
as 3, depending upon the true but unknown value for the
nondetected measurement corresponding to the larger
detection limit. This ambiguity is depicted by a vertical solid
line, instead of a point. The Weibull distribution was judged
to better describe the arsenic emission factor data since the
detected data points are closer to the 50% confidence in-
terval in Figure 2 than for log-normal distribution in Figure
S-7.

Development of Probabilistic Emission Inventories.
Probabilistic emission inventories were developed on the
basis of probabilistic mean emission factors and activity
factors. Data regarding uncertainty in the activity were not
available. It is expected that there is uncertainty in the activity
factors. However, in the absence of empirical data, a judgment
was made to assign a nominal range of uncertainties to the
activity factors. For each source category, a 95% confidence
interval in the mean of the activity factor was assumed ranging
from -10% to +10%. Therefore, the normalized uncertainty
estimates of the activity factors were generated from inde-
pendent normal distributions with a mean of 1.0 and standard
deviation of 0.05. In principle, uncertainty in activity factors

should be quantifiable on the basis of statistical error
associated with surveying techniques used to obtain activity
information or on the basis of elicitation of expert judgment
of those who prepare activity factor estimates. In some cases,
such as for energy statistics, error estimates of activity
statistics are routinely assessed and are often very small (42),
but in many other fields such assessments are not available.
However, it was beyond the scope of this work to address
this issue in detail. Instead, the approach taken here was to
create a nominal placeholder estimate of uncertainty for
activity factors that demonstrates a methodology for incor-
porating activity factor uncertainty into a probabilistic
inventory. The uncertainty estimate used for the activity factor
is sufficiently small that the analysis results are essentially
influenced only by the emission factor uncertainties. The
total uncertainty for each source category was calculated by
multiplying the recommended uncertainty estimates of the
emission factor by the uncertainty estimates of the corre-
sponding activity factor. The uncertainty estimates were
represented by uncertainty factors, which are random
numbers generated from the distribution of mean emission
factors and activity factors by Monte Carlo simulation. On
the basis of the uncertainty of each source category, a
probabilistic emission inventory was developed:

where UFEF,i ) normalized uncertainty factor of emission
factors for source i, UFAF,i ) normalized uncertainty factor
of activity factors for source i, and EIi ) emission inventory
from source i (t/yr).

For the emission inventory from each source, the un-
certainty was quantified on the basis of eq 2. Table 1
summarizes the results of the mean, estimated median,
and 95% confidence intervals in the emissions for the top
five sources for benzene, formaldehyde, chromium, and
arsenic.

In estimating the probabilistic total emission inventory,
two cases were considered to gain insight regarding whether
the use of surrogate uncertainty estimates has a significant
effect on the results for uncertainty in the total inventory. In
the first case, because the same source of information was
used for two or more categories, 100% correlation of the
uncertainty in the surrogate source and the target source
was assumed. For example, for benzene the uncertainty in
the emission factor for light-duty gasoline trucks was
correlated with that for light-duty gasoline vehicles. In the

FIGURE 2. Variability and uncertainty in the arsenic emission factor for case 14 (external combustion boilers-industrial wood) estimated
on the basis of a Weibull distribution.

PEI ) ∑
i)1

n

[(UFEF,i)(UFAF,i)(EIi)] (2)
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second case, statistical independence was assumed since in
the real world emission for one source category might not
be dependent on those in a different source category. The
relative 95% confidence intervals of the mean are given in
Table 2 for both cases. The absolute 95% uncertainty range
for the total inventory for benzene is 2500-9700 t/yr versus
2700-8200 t/yr when the correlated and uncorrelated
surrogates, respectively, were compared. For formaldehyde,
chromium, and arsenic, there was no difference in the ranges
between the two cases. For formaldehyde, the range of
uncertainty in either case was from 1700 to 4600 t/yr. For
chromium, the range was 3.7-7.0 t/yr, and for arsenic the
range was 0.6-7.1 t/yr. Thus, there was not a substantial
difference when correlated versus uncorrelated surrogates
were compared, which indicates that the source categories
for which surrogate data were used are not the most
important contributors to overall uncertainty. The absolute
values for the mean, median, and 95% confidence interval
for the total emissions of the four air toxics are also given in
Table 1 when correlated surrogates were used. Figure 3 shows
bar graphs summarizing the total emissions and the estimated
95% confidence intervals for benzene, formaldehyde, chro-
mium, and arsenic based on a log scale. It is apparent that
arsenic emission has the largest relative uncertainty. Figure
4 shows the cumulative probability in the normalized mean

emission for benzene from all source categories with cor-
related surrogates. Figures for other cases are given in the
Supporting Information.

For supporting details, please see Tables S-1-S-4 for
benzene, formaldehyde, chromium, and arsenic, respectively,
in the Supporting Information.

Sensitivity Analysis To Identify the Key Sources of
Uncertainty. The rank correlation between the uncertainties
in total emissions and the uncertainty in the emission factors
of each source category was calculated considering both

TABLE 1. Results of the Mean, Estimated Median, and 95% Confidence Interval in the Emission for the Top Five and All Sources
for Benzene, Formaldehyde, Chromium, and Arsenic

emissions (t/yr)

pollutant source mean median 95% CIa

benzene mobile source, light-duty gasoline vehicles 1164 829 139-4040
mobile source, light-duty gasoline trucks 846 603 102-2940
petroleum refinery 714 572 324-1837
four-stroke lawn and garden engines 687 667 465-1029
two-stroke lawn and garden engines 234 231 158-324
total for all sources 4600 4047 2500-9700

formaldehyde nonroad mobile source 1282 1261 912-1720
on-road mobile source 977 775 237-2700
internal combustion engines 144 90 34-401
oil and gas extraction 99.5 99 87-112
chemical and allied processes 69.7 70 61-79
total for all sources 2700 2531 1700-4600

chromium petroleum refineries, catalytic cracking 1.87 1.86 1.67-2.04
external coal combustion utility boilers 1.12 1.00 0.45-2.58
marine vessels, commercial 1.03 nab nab

chemical manufacturing-fuel-fired equipment-process heaters 0.81 0.63 0.17-2.43
all off-highway vehicles, diesel 0.34 nab nab

total for all sources 5 4.8 3.7-7
arsenic external coal combustion utility boilers 1.77 0.80 0.15-6.56

hazardous waste incineration 0.35 0.34 0.23-0.52
Portland cement manufacturing 0.24 nab nab

petroleum refineries, catalytic cracking 0.21 nab nab

marine vessels, commercial 0.20 nab nab

total for all sources 2.2 1.3 0.6-7.1
a 95% confidence interval. b Results are not available due to a lack of directly relevant or surrogate data.

TABLE 2. Results of the Uncertainties in the Total Emission
Inventories for Benzene, Formaldehyde, Chromium, and
Arsenic

95% confidence interval
in the emission inventories (%),

relative to the mean estimate

pollutant
correlated
surrogates

uncorrelated
surrogates

benzene -46 to +108 -41 to +77
formaldehyde -36 to +69 -36 to +69
chromium -25 to +42 -24 to +40
arsenic -75 to +224 -74 to +222 FIGURE 3. Total emissions and 95% confidence intervals for benzene,

formaldehyde, chromium, and arsenic.

FIGURE 4. Weighted average uncertainty factor for benzene
emissions for all source categories with correlated surrogates.
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correlated and uncorrelated surrogates. The results are given
in Tables S-1-S-4 for the four pollutants.

For benzene, gasoline on-road mobile sources are the
dominate source of uncertainty in the inventory. For
formaldehyde, the on-road and nonroad mobile sources are
the key sources of uncertainty. For chromium, the key sources
of uncertainty are chemical manufacturing-fuel-fired equip-
ment-process heaters, external coal combustion utility
boilers, and hard chromium electroplating. For arsenic,
external coal combustion utility boilers are the dominate
source of uncertainty in the inventory. The other statistically
significant correlations are smaller than 0.2 for each of the
pollutants, indicating only weak sensitivity.

For chromium, there are no sample data for the third
largest source category of marine commercial vessels. The
point estimate for this category is comparable to that of source
no. 2 that was identified as key source category. Therefore,
if the uncertainty in the emission factors from source no. 3
is similar to or greater than that of source no. 2, it would also
be a key source of uncertainty. Future evaluation for this
source category is needed when new data are available.

For arsenic, there are no data for the third to the sixth
largest source categories. In this case, the largest source
category contributes most of the uncertainty as shown by
the rank correlation of 0.99, and the second source category
has a weak correlation of less than 0.2. Thus, it is likely that
the third to the sixth largest source categories, which are
small relative to the first, are not key sources of uncertainty.

Discussion
In the procedure to develop probabilistic emission inventory,
directly relevant data were not available and judgments were
made regarding surrogate relative uncertainty estimates for
many source categories. For some source categories, it was
necessary to weight data from subcategories; however, the
results for uncertainty in the total inventory were not sensitive
to judgments regarding these weights. In particular, either
the ranges of uncertainty were similar among many of the
subcategories or the source category was not important with
regard to overall uncertainty in the inventory.

The key characteristics of the probabilistic analysis include
(1) large ranges of interunit variability in emission factors for
specific source categories, (2) mean emission factor uncer-
tainty ranging from as small as approximately (10% to as
large as -99% to +600%, (3) relative uncertainty ranges in
total emissions ranging from as small as approximately -25%
to +42%, as in the case of chromium, to as large as -75%
to +224%, in the case of arsenic, and (4) identification of a
small number of key sources of uncertainty for each pollutant.
Better data collection and reporting should be prioritized for
the key source categories.

The quantified ranges of uncertainties for benzene,
formaldehyde, chromium, and arsenic emissions in the
Houston area take into account random sampling error and
measurement error in emission factors. However, since
information regarding the contribution of measurement error
to each measurement is not available, the uncertainties
caused by the two types of error are not separately quantified.

The averaging times of the emission measurements vary
among the source categories and in many cases are not
documented in the references from which the data were
obtained. It is likely that most of the measurements are for
relatively short averaging times on the order of minutes (e.g.,
for some mobile sources) to perhaps days (e.g., stack testing).
Although the desired averaging time for exposure assessment
purposes is one year or longer, the uncertainty in the mean
emission estimates is influenced by the limited averaging
time of the available data.

The probabilistic emission inventory developed here could
be improved in several ways pending availability of additional

data or the incorporation of a more extensive expert elicitation
component. For example, although biases in the mean
emission factors are suspected, especially for fugitive emis-
sions and as a result of process upset, insufficient data were
available via which to quantify such biases. Other possible
sources of bias include lack of representative data (e.g.,
measurements may have been for load or operating condi-
tions not typical of annual average in-use activity) and the
use of surrogate data for source categories in which data
were lacking or not readily available. Expert elicitation could
be used to encode judgments regarding the additional
uncertainty associated with nonrepresentative or surrogate
data. As new data become available, the assessment can be
updated. A key obstacle to quantification of uncertainty based
upon statistical data analysis is obtaining the necessary data.
Often, data are measured and reported by multiple or-
ganizations. In the long term, the development of a protocol
for archiving such data and making the data available would
facilitate probabilistic analysis.

The uncertainty in the activity factors here is based on an
approximate judgment, mostly as an acknowledgment that
uncertainty exists and as a placeholder pending better
information. In the long term, the quantifiable uncertainty
in the activity factors should be incorporated on the basis
of expert judgment.

The results of this work demonstrate that random
sampling error and measurement error in emission factors
are substantial sources of quantifiable uncertainty in the
emission inventories of benzene and formaldehyde in the
Houston area. The positively skewed ranges of uncertainty
appropriately account for the fact that emissions must be
nonnegative. The MLE/bootstrap methodology used here
provides asymptotically unbiased estimates of the mean,
including for cases that involve nondetected data. The
substantial ranges of uncertainty estimated here should be
taken into account when air quality modeling and exposure
assessment are conducted. Furthermore, the identification
of key sources of uncertainty in the inventory serves as an
aid to prioritizing resources for additional data collection or
research to reduce uncertainty.
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